On the Classiication of the Spectrum of Second Order Diierence Operators
نویسنده
چکیده
We study nonsymmetric second order diierence operators acting in the Hilbert spacè 2 and describe the resolvent set and the essential spectrum of such operators in terms of related formal orthogonal polynomials. As an application, we obtain new results on the growth of orthonormal polynomials outside and inside the support of the underlying measure of orthogonality.
منابع مشابه
A numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators
Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...
متن کاملThe diagonal of the Pad e table andthe approximation of the Weyl functionof second order di erence
We study connections between diagonal Pad e approximants and spectral properties of second order diierence operators with complex coeecients. In a rst part, we identify the diagonal of the Pad e table with a particular diierence operator which is shown to have maximal resolvent set. The spectrum of an asymptotically periodic complex diierence operator is given, and we prove convergence on the r...
متن کاملSpectrum and essential spectrum of linear combinations of composition operators on the Hardy space H2
Let -----. For an analytic self-map --- of --- , Let --- be the composition operator with composite map --- so that ----. Let --- be a bounded analytic function on --- . The weighted composition operator --- is defined by --- . Suppose that --- is the Hardy space, consisting of all analytic functions defined on --- , whose Maclaurin cofficients are square summable. .....
متن کاملSelf-commutators of composition operators with monomial symbols on the Bergman space
Let $varphi(z)=z^m, z in mathbb{U}$, for some positive integer $m$, and $C_varphi$ be the composition operator on the Bergman space $mathcal{A}^2$ induced by $varphi$. In this article, we completely determine the point spectrum, spectrum, essential spectrum, and essential norm of the operators $C^*_varphi C_varphi, C_varphi C^*_varphi$ as well as self-commutator and anti-self-commutators of $C_...
متن کامل